On the embedded primes of the Mayr-Meyer ideals

نویسنده

  • Irena Swanson
چکیده

Table of contents: Section 1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Section 2. Sixteen embedded components . . . . . . . . . . . . . . . . . . . . 5 Section 3. 15(d+ 1) more embedded primes (plus d − d if n = 2) . . . . . . . . 7 Section 4. (n− 1)(d − d) more embedded primes, for n > 2 . . . . . . . . . . 11 Section 5. Reduction to another family . . . . . . . . . . . . . . . . . . . . . 20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The minimal components of the Mayr-Meyer ideals

rifi such that each ri has degree at most deg f+(kd) n). Mayr and Meyer in [MM] found (generators) of a family of ideals for which a doubly exponential bound in n is indeed achieved. Bayer and Stillman [BS] showed that for these Mayr-Meyer ideals any minimal generating set of syzygies has elements of doubly exponential degree in n. Koh [K] modified the original ideals to obtain homogeneous quad...

متن کامل

Primary decomposition of the Mayr-Meyer ideals

Grete Hermann proved in H] that for any ideal I in an n-dimensional polynomial ring over the eld of rational numbers, if I is generated by polynomials f 1 ; : : : ; f k of degree at most d, then it is possible to write f = P r i f i such that each r i has degree at most deg f + (kd) (2 n). Mayr and Meyer in MM] found (generators) of ideals for which a doubly exponential bound in n is indeed ach...

متن کامل

The First Mayr - Meyer

This paper gives a complete primary decomposition of the rst, that is, the smallest, Mayr-Meyer ideal, its radical, and the intersection of its minimal components. The particular membership problem which makes the Mayr-Meyer ideals' complexity doubly exponential in the number of variables is here examined also for the radical and the intersection of the minimal components. It is proved that for...

متن کامل

A new family of ideals with the doubly exponential ideal membership property

Mayr and Meyer [MM] found ideals with the doubly exponential ideal membership property. Further investigations of the doubly exponential properties of these ideals can be found in Bayer and Stillman [BS], Demazure [D], and Koh [K]. Following a question of Bayer, Huneke and Stillman, the author has investigated in [S1, S2, S3] the properties of the primary decompositions and the associated prime...

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002